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On a Characterization of Multivariate Distributions
with Applications in Reliability and Epidemiology

by
Naftali A. Langberg

ABSTRACT

Let T., ..., Tn be positive random variables with finite means. Further

1)
let I be the collection of all subsets of {1, ..., n}, and let £ be a function
from the nth Euclidian space to I, that equals to J, (J ¢ I) at (31, e an)
iff min a,T, < min a,T.. We prove that min a,T, and £(a,, ..., a_) are inde-
T R 1sisn b i

pendent random variables for every n real numbers 81, eeey 87 iff for every n
positive real numbers bl’ Sleioly bn and r = 1, ..., n the random variables
min a,T./E( min a.Ti) and T /ET  are identically distributed. Further we provide

= : L
1<is<n 1<isn
an explicit formula for the distribution of g(al, Sty an). Multivariate
distributions that possess the independence property are presented. Their use
in Reliability growth or decay models as well as in Mathematical Epidemiology

are discussed.

Ke:r Words: Multivariate distribution, minima, Weibull, distribution, independence




1. Introduction and Summary.

Introduction. Let T aiaa Tn be positive random variables, and let

R
815 cees A be positive real numbers. If Tl’ Sty Tn are the initial life
lengths of n components in a series system, then alTl, aisi 3 an’l'n can be
regarded as the life lengths of those components at some phase of a relia-
bility growth or decay process. Let an individual be exposed to n contagious
diseases in an environment consisting of infectives and susceptibles. Then
alTl’ PorTN anTn may describe the times until that individual becomes an
infective from disease 1 through n respectively. If we observe a series
system, or an individual who is exposed to n diseases, only two quantities
are identifiable: (i) Time until occurence (failure, or infection) (ii)
Cause of occurence (failure due to some components, infection by some of

the diseases). The stochastic representation and analysis of the described

models simplifies if for every n positive real numbers the following two

nroperties hold.

Time to occurence and cavse of occurence are independent random variables. (1.1)

Time to occurence and cause of occurence have "identifiable' distributions.(1.2)

Recently Langberg, Lanzdorf and Proschan (1978) used multivariate distri-
butions that satisfy (1.1) and (1.2) to describe and analyze a variety of
reliability growth and decay models. In the cited reference the authors con-
sidered multivariate distributions with independent and dependent componerts,
as well as distributions that may or may not be absolute continuous. A well
known family of n-dimensional random vectors with independent components that
satisfy (1.1) and (1.2) is the exponential one. Ifore specifically let
Tl’ T Tn be independent exponential random variables with means Mps cees W
respectively, and let 8y, o0y @ be positive real numbers. Then the following

three statements hold.




n
Time to occurance is exponential with mean equal to ( Z a51u51)°1. {1.3)
j=1

71)-1

n
The probability of occurence due to cause i equals to (aflufl)( ) a?lu
SR =5 TR (1.4)

for £ » %, ..., B
Time to occurence and cause of occurence are independent random variables. (1.5)
Billard, Lacayo and Langberg (1978), Lacayo, Langberg (1978) and Langberg
(1978), utilized those properties of independent exponential random variables
to describe and analyze n-dimensional simple epidemics.
Summary: Lemmas instrumental to the proofs of our main results are
presented in Section 2. In Section 3 we show that condition (1.1) is equivalent

to the following statement.

For every n positive real numbers a1 eees an,(E min a.'l‘.)'1 min a,T. and

z i
1<is<n 1<isn (1.6)

(ETj)'lTj are identically distributed random variables for j = 1, ..., n.
Clearly (1.6) provides an explicit formula for the distribution of the random
time until occurence. In addition we derive in Section 3 from (1.6) an explicit
form for the distribution of the cause to occurence. Some multivariate distri-

butions which satisfy (1.6) are presented in the last Section.




2. Preliminaries.

Let denote by (Tl’ Tz) a positive random vector with means equal to Hys Hy
respectively, by T(x) the minimum of x Tl, and Tz, and by F(x) the expected
value of T(x). Further let F'(x+) and Fi(x-) be the right and left side
derivatives of I at the point x. Finally let G(x) be equal to u3'I(x > 0)F(x),
Gn(x) be the convolution of G and z uniform distribution on f—%, 0], and let
gn(t) be the density function of Gn(t), n=1, 2, .,. . For reference purposes

we summarize in Lemma 2.1 without proofs some straight forward results.

Lemma 2.1. The following six statements hold.
F is a concave nondecreasing function,

Lim F(x) = 0, and Lim F(x) = Hye
x+0* X0
Fi(x+) = ETII(T2 > le) and Fi(x-) = ETZICT2 2 le).

Lim SuplGn(x) - G(x)] = o.
N+ X

&, is nondecreasing in n, and Lim gn(x) = G (x+), for x in (0, =),
n-ro

Gn(x) 2G6(x), forn=1, 2, ..., and every real number x.
Lemma 2.2. Let x and y be real positive numbers, then

Yy
[ B (ue)

x T du = ¢nF(y) - &nF(x).

Proof. Since by (2.6) Gn(x) and Gn(y) are positive real numbers, we obtain

y g (u)
that £ Eﬁ?ﬁ?du = 2nGn(y) - znGn(x). Statement (2.7) follows from (2.4), (2.5)
and the monotone convergence theorem.

(2.1)
(2.2)

(2.3)
(2.4)

(2.5)

(2.6)

2.7)

g



s

Let £(x) be the cause of occurence function given by

{I}I(T2 > le) + {Z}ICT2 < le) + {1, Z}ICT2 = le). (2.8)

Lemma 2.3. If £(x) and T(x) are independent random variables for every real |

number x, then for z in (0, =) 1
® P(T, #uT)) I
F(z) = uzexpf-{ -—-,iir———-CuJ. (2.9)
Proof. By (2.3) and the independence assumption F’(z+) equals to

z’lF(z)P(T2 > le). Equation (2.9) is obtained from (2.2) and (2.7).

number x. Further let's assume that ITE'R'I(ETg)I/k is finite. Then

ko

|
1
|
\
|
|
|
Theorem 2.4. Let g£(x) and T(x) be independent random variables for every real i
|
|
|
T(x) and uEIF(x)T2 are identically distributed for x in (0, =). (2.10) !
|
|
{
|

Proof. From (2.9) we obtain that E TX(x) = Er_uglpcx)TZ]k for k=1, 2, ... .

Consequently (2.10) follows from the moments property of T,. [Breiman (1968),

pp. 182, proposition 8.491.

Remark 2.5. Since x min(x‘lrl, T,) = min(T,, xT,), it follows that if the

conditions of Theorem (2.4) are satisfied, then

u'T, and u;‘wz are identically distributed. (2.11)

Lemma 2.6. Let T1 and T2 have positive continuous densities f1 and f2

respectively. Further let x and y be positive real numbers, and a = yx'l If

(2.10) is satisfied, then the following two equations hold.
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-1 -1 2 -2

P(T, > lel = x} = £ (x)f,(y F (a))a” F "(a)F' (a+). (2.12)
-1 -1 2 -2

P(T, 2 y|T1 = x} = £ (X)f,(y F" (@))a" F “(a)F' (a-). (2.13)

Proof. Equation (2.13) follows clearly from (2.12). To prove (2.12) it
suffices to crnsider the case F'(a+) = F'(a-). A proof for this case involves

elementary calculations and is omitted.

Remark 2.7. Let Z be a positive random variable independent of (Tl, Tz), If

the vector (Tl’ TZ) satisfies (2.10), then so does CTIZ, TZZ)'

Theorem 2.8. If (2.10) holds, then for every real number x the random varia-

bles £(x) and T(x) are independent. ‘

P-oof. Firstly let's assume that T1 and T2 have positive and continuous

densities f1 and fz respectively. Since PIT(x) > t, £(x) = {1}]

[ PIT, > xu|T| = ulf (u)du, and P[T(x) > t, £(x) = {2}] = [ Pxu>T
t/x t/x

the result for this particular case follows from (2.12) and (2.13). To complete

2 > t|T1=u]f1(u)du,

the proof, let Zl’ 22, ..., be a sequence of random variables independent of

. - -n(t-1) _
CTI, Tz), given by P[Zn <stl=1[1-e e 2 1), n=1, 2, ... . len’ TZZn
have continuous positive densities and by Remark (2.7) satisfy condition (2.10)
forn=1, 2, ... . Consequently ZnT(x) and £(x) are independent for every real

number x, and positive integer n. Since Zn converges in probability to 1 as

n + o the desired result follows.

Finally we note that if £(x) and T(x) are independent for every real number x,

then by (2.3) the following tihree equations hold for z in (0, «).




g _

s
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P[T2 >z TI] = z F'(z+)/F(z).

(2.14)
PIT, <2 T,J =1 -z F'(2-)/F(z). (2.15)
PIT, = z T,1 =20(F' (z-) - F}(z+) /(). (2.16)




3. Main Results.

Let (Tl’ elars Tn) be a positive random vector with means equal respectively
to Mps eoes Moo and let I be the set »f all nonempty subsets of {1, ..., n}.

Further let T(a,, ..., a_) be min a,T., and let F(a,, ..., a_) be the expected
1 B 1<i<n 1 B’

value of T(al, S g an). We define the cause of occurence function E(al, ety an)

as
} jI(min a.T, < min a,T,). (3.1)
Jel der T df **
Finally let denote by statement (3.2) the following property of CTl, dioriy Tn)’

There exists an integer i0 in {1, ..., n}, such that T(al, T an) and

Ti u;I F(al, Nt s an) are identically distributed for every n positive real (3.2)
00
numbers Ay eees a .

For reference purposes we note that

Lemma 3.1. If (3.2) is satisfied, then the following three statements hold.
W'T_, r =1, ..., n are identically distributed random variables. (3.3)

For J ¢ T and a,, i € J positive real numbers, min a.T, and u'l(E min a.T.)’lT
i jeg 11 T jeg 1 i T

are identically distributed random variables for r = 1, ..., n. 3.4)
For J ¢ I and al, Lwe an positive real numbers, min aiTi and
1 1<i<n (3.5)
(min aiTi)F(al, e uly an)(E min a T ) = are identically distributed random variables.

ieJ iC\: 11

We are ready to extend Theorems 2.4 and 2.7.

Theorem 3.2. Let E(al, o5 o g an) and T(al, e an) be independent random variables
1/k

P -3
for every n real numbers a1y ceey @ Further let assume that Lim k " (&% TE)
. ke
is finite for some positive integer r in {1, ..., n}. Then (3.2) holds.




Proof. Let ffﬁ'k'l(E T? )1/k be finite, and let U, and U, be respectively
koo 0
equal to min a.T. and a, T. . Since (U,, U,) satisfies the conditions of
S i1 i 1 2
1:10 00
Theorem (2.4), statement (3.2) follows.

Theorem 3.3. If (3.2) holds, then for every n real numbers a > A, the

1° °°

random variables g(al, ey an) and T(al, ke an) are independent.

Proof. Let JeI and Ul’ U2 be equal respectively to min a.Ti and min aiTi'
ield i¢Jg
Since by (3.5) condition (2.10) is satisfied, the result is obtained by

Theorem 2,7.

Remark 3.4. Let J be in I, further let Ul’ U, be respectively equal to

min a.T. and to min a,T.. Finally let H(x) be equal to E min(xU,, U If
p i1 : ii 1
ieJ 1¢J

CTI’ ilers Tn) satisfies (3.2), then by (2.3)

2)’

P{g(al, ey an) =J} = H=(x+)|x=1 . F(al, o an).

Remark 3.5. Let Z be a positive randon variable, independent of (Tl’ oo Tn).
If CTl, A Tn) satisfies (3.2), then so does (le’ pen TnZ).
A nonnegative random variable T has a Weibull distribution with parameters

u and a if for t in (0, =)
P{T > t} = exp[-ut®1, u, a > 0.

Let a be a positive real number and g a positive real function defined on the
nth Euclidian space. He say that a nonnegative random vector (Tl’ o Tn] has

Weibull minima, if for every n positive real numbers a,

P{T(al, Ty an) >t} = expl-g(a o an)ta].

A

(3.6)

(3.7)

o an and t in (0, =)

(3.8)




Clearly every subset of n random variables with Weibull minima has Weibull

minima. If T is a Weibull random variable with parameters p and a then

ETF = M0 [ o2 K0y, (3.9)

0
Consequently if T is Weibull with o 2 1 then
P, o /
e ke ™VE ¢ o (3.10)
k>

and the following corollary hclds:

Corollary 3.6. (i) If (Tl’ relels Tn) has Weibull minima then E(al, o an) and

T(al, Seor an) are independent random variables for every n positive real
numbers A1y eees B (ii) If at least one of the Ti's is Weibull with o 2 1,
and g(al, e an) is independent of T(al, iy an) for every n real numbers

Aps ees 3, then CTI’ Wreiels Tn) has Weibull minima.
Proof. Follows from Theorems 3.2, 3.3, and from (3.10).

Essary and Marshall (1974) defined a class of positive n-dimensional random

vectors that have the following property.
For J € I and a» i € J positive real numbers, min aiTi has an exponential

ieJ (3.11)
distribution.

Corollary 3.6 provides in particular the following characterixation of that

class.

Corollary 3.7. Let (Tl’ vhvg Tn) be a positive random vector with at least one
exponential component. CTI, e g Tn) satisfies (3.11) iff E(al, e an) and

T(al, vviy an) are independent random variables for every n real numbers L LIRERT
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Let R(t) be a positive, strictly increasing function, that is differentiable
and converges to = as t - @, Further let h be a positive real function on the
nth Euclidian space. We say that (Tl’ AT Tn) has pronortional minima, if

for every n positive real numbers A1y eees a and t in (0, «)

P{T(al, X an) >l = expf-h(al, Sy an)R(t)]. (3.12)

Finally we show that the only family of random vectors with proportional minima

is the Weibull one.

Theorem 3.10. Let (Tl’ oA Tn) be a positive random vector. (Tl, e Tn) (n 22)

has proportional minima iff it has Weibull minima.

Proof. Let 6(a) be h(a, ..., a), then R(ta)e(a) = R(t)6(1). Consequently

%—%% = %’%23 hence R(t) = AtS for some positive real numbers A and c.

. - b i ol oo Al .‘
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4. Examples.,

Example 4.1. Let XJ, J ¢ I be nonnegative real numbers, that add up over the
sets in I to a positive number. We define the multivariate distribution of
CTI, il Tn) for tl’ Earels tn in (0, =) by

P{T, >t.,,i=1, ..., n} = exp[- meaxtj,a>o (4.1)
i i i
JeI “igd

The distribution in (4.1) is an extension of the bivariate Marshall-Olkin

(1967) exponential distribution. Clearly this family of random vectors has
Weibull minima with g(al, R | ) = JEIA Tz? a1 In particular we obtain

| for A5 = 0, whenever J is not a singlton set independent Weibull random variables.

: If ,; =0 forJ = {1, ..., n} the multivariate distribution given by (4.1)

reduces to correlated Weibull random variables.

Example 4.2. Let Al. Az be nonnegative real numbers. Further let Yys Yg oo
be a sequence of positive numbers that add up to a finite real number. Finally
let bl’ b2 ... be a sequence of positive real numbers. We define the bivariate

I distribution CTI, Tz) for tl’ t and o« in (0, «) by

. a -
: P{Ti > ti’ i=1, 2} = exp[-xlt - Azt - nzlk max(t zbna)]. (4.2)
'

This distribution has Weibull minima with g(a ; & ) equal to
131° + 2,8 2 Z A (a1 ;“bna . One can extend with no difficulty (4.2) to

the multivarxate case, although the explicit expression becomes some what

cumbersome.

Using Remark (3.5) we can generate the following two examples.

&

- B 37 WL TE DS R .a‘
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Example 4.3. Let (Tl‘ atn s Tn) be given by (4.1) and let Z be a Weibull random
variable with parameters p and o independent of (Tl’ stakers Tn). The random

t

vector (Z'lTl, Aatare Z—lTn) with a survival probability at t,, ..., t,

(min ti > 0), given by

i
paly + § A max t%77F (4.3)
7 AR
o s =]
satisfies (3.2).
Example 4.4. Let CTI, Ao Tn) be given by (4.1) and let Z be a positive random
variable independent of CTI’ e Tn) with a density equal to
B+1
a —1
e ¥ law ¢ &L - 1. The random vector @71y, ..., 27T ) with a
survival probability at tl, Sy tn’ {min ti > 0) equal to
g+1 1
TuCu + J A, max t%3 @ =)
e -
J ied
t satisfies (3.2).
Finally let Hps wees By be positive real numbers, let § he in the set
(0, 17 and let a b2 in [i, «). The survival probability given by
it 8
l expl- J u,t%28, (4.5)
g 2

n
clearly has Weibull minima with g(a, ..., a ) equal to ( ! uia;a)ﬂ.
i=1

Essary and Marshall (1974) presented two bivariate distributions that have
exponential marginals and the minima of the two components is exponential, _-ever
their joint distributions are not bivariate ifarshall-Olkin (1967) exponential.

The absolute contipuous distribution given in (4.5) for 8 = 1/a is a sinnla

n-dimensional example for such a situation.




(1l
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